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Project Description
* How has the timing and length of growing

seasons changed over the MODIS era?
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S Urfa Ce temp era th'e an d /Gn d S Uffa Ce ph en O/O gy Figure 1| Long-term changes in satellite-derived spring phenology. a-h, Regional changes in spring phenology for deciduous broadleaf forests in the

Eastern US since the start of the century (2000-2012) based on remotely sensed daily greenness indicies: green chromatic coordinate (GCC (a,e)),
enhanced vegetation index (EVI (b)), normalized difference vegetation index (NDVI (¢,g)) and the 8-day MODIS phenology product (d). Daily indices

o H were extracted using two date extraction techniques: a robust smoothing-spline approach (a-c) and a dual logistic greendown curve fitting method (e-g).
be USEd tO Ch aracter’ze th e Imp aCt Of drO Ugh ts All trends shown (estimated using panel analysis) are significant at P < 0.05 (96.7% of all deciduous broadleaf forest pixels). h, Histogram of all trends
from all methods. The vertical red lines illustrate the mean trend across all indices and date extraction methods. See Methods section for a description of
the indices used.
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)2: 22 Years (and counting) of Global Land Surface Phenology
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Progress and Results: Trends in GSL Timing & Length
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agress and Results: Sub-Seasonal & Seasonal Scale Carbon

GPP =@ - CUP-GPP,,,,
MODIS GSL and Max EVI do not reproduce results based on tower-based GSL and carbon uptake period
Challenge: MODIS does not capture site-specific variance, esp WRT GPP,,,, vs EVI ...
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Fig. 1. Joint control of the temporal variability of satellite-derived annual GPP and the spatial variability of FLUXNET annual GPP by CUP and GPPrax. (A) The
temporal variability of GPP in North America from 2000 to 2010 can be better understood by splitting annual GPP into GPPy,.x and CUP. The flat color interpolated
surface reflects a good relationship between annual GPP and GPP, x CUP (R’ = 0.95, P < 0.001). Vertical lines were added to improve readability. (8) Con-
tribution of GPPyay x CUP to GPP temporal variability over 2000-2010. The contribution in each grid cell was derived from the R? in the linear regression analysis
between GPP and GPP,,,, x CUP. C and D show relationships between GPP and GPP,,,, x CUP across FLUXNET sites in forest and nonforest biomes, respectively.
Each data point in C and D represents one flux site with average data over different years. CROP, cropland; DBF, deciduous broadleaf forest; EBF, evergreen
broadleaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; SAV, savanna; SHRUB, shrubland; WET, wetland.
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Figure 3. Bayesian hierarchical model results. (a) Gross primary productivity (GPP) metrics-based model with biome-level
intercepts and slopes (Model 3); (b) GPP metrics-based model with site-level intercepts and slopes (Model 5); (c) Moderate
Spatial Resolution Imaging Spectroradiometer (MODIS) LSP-based model with biome-level intercepts and slopes (Model

3); (d) MODIS LSP-based model with site-level intercepts and slopes (Model 5); () Comparison showing the normalized
effect of GPP metrics- and LSP-based models on model results with site-level intercepts and slopes. Bars show 95% Bayesian
credible intervals. The larger red and blue points in panel (e) show the overall effect across all biomes from the LSP- and

Xia et al, PNAS, 2015

GPP-derived metrics, respectively. ZGPP (Unit: gCm~2 yr~!) is the annual GPP at each EC tower.
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Gao et al., Global Biogeochemical Cycles, 2023




rogress and Results: Sub-Seasonal & Seasonal Scale Carbon

Generalized additive models (GAMs) estimated using gridded met data to capture site-specific
variance at 73 AmeriFlux sites with 453 site-years of data spanning 4 cover types

Observed vs Modeled GPP

Observed vs Modeled GPP Anomalies
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esults: Sub-Seasonal & Seasonal Scale Carbon

Upscaling tower-based results to biome scale in Eastern Temperate Forests

Biogeographic variation in drivers GPP trends
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Next Steps

e Synthesize LSP trend results (Moon et al., in prep)
* Continue and extend GPP analysis (Green et al., in prep)

* Analysis of trends and drivers of in arid/semi-arid systems (Choi et al)

e Start looking at LSP-Carbon-Drought signatures
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